The complete quantum computing
course
https://www.udemy.com/course/quantum-computers/

Mathematical Foundations

Bits vs qubits

e Bits: 1's and 0’s. Transistors can eventually generate a 1 or O (is there electricity in
this transistor - yes 1 or no 0?). This is a machine language - even with (any)
programming languages it does not matter. It only understands 1’s and O’s.

1ooooopo1oopoo1opoo11poooooooooo
opcode rc ra rb (unused)

ADD (R2, R3, Ré)
|

A=B+&

Programming in 1’s and O’s is very difficult to do. The machine will do this “for us” -> thanks
to processors and transistors. | only understand if there is electricity in a transistor or not.
Program logic (like a = b + ¢) makes a lot more sense for humans than programming in bits.

0’s and 1’s can be displayed in a binary form. This is related to the decimal system.

You can now do this for binary numbers as well (binary to decimal). Binary only has two
numbers: 0’s and 1’s. So you need to come up with a calculation that can convert binary into
decimal (and the other way around).

Binary 1101101 = decimal 109.


https://www.udemy.com/course/quantum-computers/

The same goes from hexadecimal to binary (and the other way around):

Hexadecimal A4F6 = 42230 decimal.




Decimal - Binary - Octal - Hex — ASCII
Conversion Chart

Decimal Binary Octal Hex ASCI Decimal Binary Octal Hex ASCIl Decimal Binary Octal Hex ASCIl Decimal Binary Octal Hex
0 00000000 000 00 NUL 32 00100000 040 20 sp 64 01000000 100 40 e 96 01100000 140 60
1 00000001 001 01 SOH a3 00100001 041 21 ! 65 01000001 101 49 A 97 01100001 141 61
2 00000010 002 02 STX 34 00100010 042 22 = 66 01000010 102 42 B 98 01100010 142 62
3 00000011 003 03 ETX 35 00100011 043 23 # 67 01000011 103 43 C 29 01100011 143 63
4 00000100 004 04 EOT 36 00100100 044 24 $ 68 01000100 104 44 D 100 01100100 144 64
5 00000101 005 05 ENQ kg 00100101 045 25 % 69 01000101 105 45 E 101 01100101 145 65
6 00000110 006 06 ACK 38 00100110 046 26 & 70 01000110 106 46 F 102 01100110 146 66
7 00000111 007 07 BEL 39 00100111 047 27 ) n 01000111 107 47 G 103 01100111 147 67
8 00001000 010 08 BS 40 00101000 050 28 ( 72 01001000 110 48 H 104 01101000 150 68
9 00001001 011 09 HT “ 00101001 051 29 ) e 01001001 111 49 I 105 01101001 151 69

10 00001010 012 0A LF 42 00101010 052 A " 74 01001010 112 A ) 106 01101010 152 6A
" 00001011 013 0B VT 43 00101011 053 28 + 75 01001011 113 48 K 107 01101011 153 68
12 00001100 014 0C FF 44 00101100 054 2 7% 01001100 114 4 L 108 01101100 154 6C
13 00001101 015 0D CR 45 00101101 055 20 - m” 01001101 115 40 M 109 01101101 155 60
14 00001110 016 OE SO 46 00101110 056 2E . 7 01001110 116 4E N 110 01101110 156 6E
16 00001111 017 oF sI 47 00101111 057 2F |/ 7 01001111 117 4F O m 01101111 157 6F
16 00010000 020 10 DLE 48 00110000 060 3 0 80 01010000 120 SO P 12 01110000 160 70
17 00010001 021 1" DC1 49 00110001 061 3 1 81 01010001 121 51 Q 13 01110001 161 n
18 00010010 022 12 DC2 50 00110010 062 32 2 82 01010010 122 52 R 114 01110010 162 72
19 00010011 023 13 DC3 51 00110011 063 33 3 83 01010011 123 53 s 115 01110011 163 73
20 00010100 024 14 DC4 52 00110100 064 34 4 84 01010100 124 54 T 116 01110100 164 74
21 00010101 025 15 NAK 53 00110101 065 35 5 85 01010101 12§ 55 U 17 01110101 165 75
22 00010110 026 16 SYN 54 00110110 066 B 6 86 01010110 126 56 V 118 01110110 166 %
23 00010111 027 17 ETB 55 00110111 067 a7 T 87 01010111 127 57 W 119 01110111 167 m
24 00011000 030 18 CAN 56 00111000 070 38 8 88 01011000 130 S8 X 120 01111000 170 78
25 00011001 031 19 EM 57 00111001 O71 39 9 89 01011001 131 59 Y 21 01111001 171 ]
26 00011010 032 1A SuB 58 00111010 072 3A 20 01011010 132 5A Z 122 01111010 172 TA
27 00011011 033 1B ESC 59 00111011 073 B o 01011011 133 58 | 123 01111011 173 7B
28 00011100 034 1c FS 60 00111100 074 3c < 92 01011100 134 5C \ 124 01111100 174 7C
29 00011101 03§ iD GS 61 00111101 075 D = <] 01011101 135 D | 125 01111101 175 70
30 00011110 036 1E RS 62 00111110 076 I3E > 94 01011110 136 SE A 126 01111110 176 7E
n 00011111 037 1F us 63 00111111 077 3F ? 9% 01011111 137 5F = 127 o1 177 7F

Colors can also be converted from binary to color (and the other way around):

RGB (218,150,149)

11011010
10010110

ASCH

- e ™o an o

~® “aveoe>gzg—»x—

| ==~ N< X § < C

R

R
G
B 10010101

A computer can only understand one single state at a time - a number from 0 to 256 due to
our 0’s and 1’s system. The calculation of a regular computer can only represent only a
single number AT THE SAME TIME.

Qubits: A Quantum Computer can use all these states at the same time instead of only one
number at a time. The quantum computer can represent every single number between 0 and
256 AT THE SAME TIME.



Probability

Mathematical galore! Probability and binary logic.

P(A) = Probability of A happening.

P(A AND B): A and B are happening at the same time.

P((AAND B) OR C): A and B happen at the same time, or C happens, or all at the
same time? Who knows?

Binary logic:

e AND = both happen.

e OR = either option happens (the one OR the other).

e P(AAND B) = 0: mutually exclusive. Both A and B cannot happen at the same time.

o P(AorB)=P(A)+ P(B): what is the probability of one of those happening?
They are dependent on each other.

e P(AAND B) = P(A) x P(B): independent. Either A or B can happen - they are not
dependent on each other (by the AND). If it is mutually exclusive it is never possible -
but by multiplying both options, both options are independent of each other.

o P(AORB)=P(A)+P(B)-P(AAND B): now they are independent of each

other.
Example:
P(A) = 30%
P(B) = 40%

P(AOR B) = P(A) + P(B) - P(AAND B)
=0.3+0.4-(0.3*0.4)
= 0.58. 58 % of chance either A or B is happening. This is the probability.

Statistics
15, 22, 33, 40, 55, 61, 79

Min: 15.

Max: 79.

Mean: 43,57 ~ (add all numbers up & divide by length of array).
Median: 40.

Consider we have the mean - we want to know how many different points we have in an
array. We have 7 numbers now - easy - but what happens if you have millions of numbers?
e Variance: in a given list you have an amount of variance. This number on its own
doesn’t mean a lot. It can be used to compare other variances. Low variance means
the data points are generally similar and do not vary widely from the mean.
e Standard Deviation: measure of the amount of variation or dispersion of a set of
values. Thus - you can also use this to determine variation. A low standard
deviation means data points are close to the mean or average value.

For our above list the square root of all the numbers would be 515.95 square root.
The standard deviation would be 22.71.
(15 - 43.57)? = 816.2449



(22 - 43.57)2 = 465.2649
(33 - 43.57)2 = 111.7249
(40 - 43.57)2 = 12.7449
(55 - 43.57)2 = 130.6449
(61 - 43.57)2 = 303.8049
(79 - 43.57)2 = 1,255.2849

1,405.9796 + 1,689.7347 = 3,095.7143. Now take the amount of numbers in your list, minus
one, and you have a variance! The standard deviation formula is fairly similar - except for
now also including the square root of the variance result.

Variance Calculator Standard Deviation Calculator

Enter Data Set Enter Data Set

15,22, 33, 40, 55, 61, 79 15,22, 33, 40, 55,61, 79

@® sample O Population
® sample O Population P P

( \ — | Clear | Calculate
| Clear ‘ Calculate ‘ : ===
- : - Answer:
Answer:
Standard Deviation s= 22714585
Variance s?= 515.95238 Variance 2= 51595238
Standard Deviation 5= 22714535 Count n=7
Count n=7 Mean T = 43571429
Mean T = 43571429 Sum of Squares S5 = 3095.7143
Sum of Squares 55 = 3095.7143
Solution
Solution [Sn (o 7)2
&2 diqlzi—7)
n—1 S5
8=/ -
5 S8 \; n—1
n—1 [3005.7143
§=,/—
, 30957143 V71
T—1 /3005.7143
8 = Vl' —
,  3095.7143 6
8 = —
6 s = /515.05238

% = 515.05238 s = 22.714585



Complex numbers

Examples:

e Complex Conjugate: change the sign of the imaginary part. + becomes -, - becomes
+. This will be used a lot in quantum computations.
o (3+2i) = (3-2i). Only the imaginary part - not the real part.
e Squared magnitude: complex number * complex conjugate!




Use the complex conjugate of the nominator (noemer) and use this to calculate!

Matrix

Basic understandings:
e Rows vs Columns. 2 rows, 2 columns = 2 x 2 matrix. /It doesn’t matter if you have
real numbers, or complex numbers.

e Calculations: calculating matrices
o Sommation:



e Subtract:

e Multiply: a scaler is used in the front (real or complex number):

e Matrix multiplying: it is more complex - but this is what a Quantum Computer
does in order to calculate things.



How do you do this: take the first row and the first column of the two matrices. First
result: 0 * 2 + 2 * 5 =10. Second result is calculated by taking the first row and the second
column. Next is the second row with the first column, and finally the second row with the
second column.

The difficulty starts when the matrices do not align with the same columns or rows. To
calculate such matrices you always take the rows of the first matrix and the columns of the
second matrix. In the below example you first take the three rows and the one column:

Example calculation: (0*2)+(2*5)=10.(3*2)+(1*5)=11.(9*2) + (8 * 5) = 58.



e Tensor Product: you can make a new matrix from two matrices!

The difference between a direct sum vs tensor product:

o]:’ﬁon&\

s

Y

h] ’5 5

~ N EJ

4 g "
@H w RaR Vo in ROR
temsor ?mduc{—

direct cum



Special matrix

e Identity matrix: (1), Xl = X. Don’t forget about the 1’s. This matrix always is identical:
1’s in the middle row, O’s everywhere else.

e Inverse (real number) vs inverse (matrix): Why do we need an inverse matrix?
Because we cannot divide - but you can use a multiplication by an inverse for this.

Example if we would not be able to divide with regular numbers either. How can | share 10
apples with 2 people? | cannot divide, so i take a reciprocal of 2 (which is 0.5) and multiply
this with the amount of apples. 10 x 0.5 = 5. Each person gets 5 apples!

When you calculate the reciprocal of a number - you always get 1. When you calculate the
inverse of a matrix you will always end up with an Identity matrix! How do we calculate this
reciprocal?

2’s reciprocal is 2. This will directly calculate to 0.5. A reciprocal is always the same for each
regular number: put a ‘1’ in the numerator, while the number itself is the denominator. Since
we cannot divide with a matrix - we can only use a -1 variant as such. This variant will
always be the identity matrix with 0’s and 1’s.



Just like a number has a reciprocal

Reciprocal Reciprocal

\ 4

Reciprocal of a Number (note: % can also be written

... a matrix has an inverse :

Inverse of a Matrix

1

We write AL instead of Y because we don't divide by a matrix!

OK, how do we calculate the inverse?

Well, for a 2x2 matrix the inverse is:

1
ad—bc

In other words: swap the positions of a and d, put negatives in front of b and c,
and divide everything by ad—bc .

Note: ad—bc is called the determinant .

Let us try an example:

How do we know this is the right answer?

Remember it must be true that: AA™l = I

So, let us check to see what happens when we multiply the matrix by its inverse:

gl




A real-life example if we cannot simply divide and need to use matrices:

A group took a trip on a bus, at $3 per child and $3,20 per adult for a total of $118,40.
They took the train back at $3,50 per child and $3,60 per adult for a total of $135,20.

How many children, and how many adults?

Child Adult Bus Train Bus Train




There were 16 children and 22 adults!

e Transpose: switch a result from a row to a column. The same can be done with
matrices.




e Complex conjugate vs Adjoints: transpose - complex conjugate!

Linear transformation

e Unitary matrix: if an adjoint / conjugate transpose is equal to an inverse you end up
with an identity matrix (thus - the matrix result is the same).




e Hermitian Matrix: Adjoint equals X itself (you cannot reverse this operation).

e Vector: Column matrix (Quantum Computing). It is simply a single-column matrix.
e Linear transformation / linear map: we can represent the same thing with a column
matrix once you do the calculation.




To do this you need to do a rotation - with cos and sin). Not a huge deep-dive for quantum
computing. This formulation exists and how linear transformation is done. This kind of
rotation will happen in Qubits all the time in order to transform / rotate state:

Qubit and physics

Superposition and interference

Young generated a theory about 100 years ago about light. A candle light / laser light has
photons. When dealing with quantum physics we are going to deal with subatomic particles
(electrons, for example).

A double-slit is a card without any slit. If you give a light to this card it doesn’t go beyond this
card. No light on the end of the line. If you have one slit, light will get through. One ray of
light is reflected. If you have a double-slit you will get a distinct pattern which doesn’t make
sense. One slit = one ray of light. Two slits = five rays of light.

r double- \ 1
A I
interference

pattern J




Light is like a ray instead of a particle - this theory solves this problem as multiple rays are
reflected, thus light is a wave-like structure. The light waves are interfering with each other
as such:

This interference pattern is noticeable once the light passes through the slits. The waves are
colliding with each other and creating an interference pattern. The measuring for this is an
observer for this experiment. In this experiment a similar setup is created - and the wave of
light is suddenly only behaving as a particle. As such you will only create two rays of light,
opposed to the previous statement. If no observation is done a multitude of rays of light is
noticeable. This is called a collapse of the wave function. Even when sending single
photons - this interference pattern is still occurring. The logical explanation: the photon is
interfering with itself. It is in a superposition - in both the left slit and the right slit. When we
observe this, this superposition is broken. When it reaches the position (the slits), it lands
somewhere and creates this interference pattern again.

e Superposition: qubit can have one and zero, and anything in between. A qubit can
have any position at the same time - but this is only a probability. A single photon can
be on the left or right side, it can land anywhere on the reflected side.

Interference: light / photons can interfere with each other (see drawing above).
Collapse: without the observation, the light interferes again and collapses in multiple
positions.



Entanglement

We'll be talking about electrons and atoms. The below picture displays an atom with
electrons (green dots).

How do we know this position of each electron / object? Latitude, longitude? We can try to
determine their position according to coordinates - and you have different values to
determine this position.

Principal.

Orbital Angular Momentum.
Magnetic.

Electron Spin.

As this is not a quantum physics class - we will not go further in depth with these terms. We
will look at the Electron spin: spin up or spin down.

An electron is always in the superposition. We cannot determine if it is either in a spin up or
spin down state - as it can be in both states. Before measurement we don’t know this
position. We can only say it is either spin up or spin down, but actually is in a superposition.
After we measure this - we get spin up for the first time, afterwards it will be in a spin up
position again. Once this state is determined, it will always be in the same position
afterwards. Example: a cat in a box. Radio-active substances near the cat box are closed.
50% chance this radio-active substance will decay, but we don’t know it (poison the cat).
Before opening the box: the cat is in a superposition of being alive or dead. Once we open
the box we know what the actual position of the cat is (dead or alive? Spin up or spin down
state?). At the end of the measurement it is either spin up or spin down.



Entanglement refers to the fact that each spin is correlated to one another. One will spin up,
while the other qubit will spin down. It doesn’t matter where they are located as they
entangle with each other. It is faster than the speed of light as it happens instantaneously.
Einstein referred to this as a “spooky action at a distance”. We can correlate both qubits as
both up and down since they can be entangled with each other. It is just a correlation
between two qubits, photons, electrons,... Once we measure one qubit - we know the
state of the other qubit. We will know the result of the other state immediately!

Qubit state

Qubits will be displayed in a matrix - as seen in previous lessons. Either it is spin up, or spin
down, and is represented in a column matrix to perform operations (such as superposition,
or entanglement).

The top number represents the spin down state, while the lower number will represent the
spin up state. Once we perform a calculation we will know where the “1” is represented. This
will create a 100% probability of being in this state.




At this point we refer again to the superposition - as it doesn’t have to be in the spin up or
spin down position. 50% chance of getting zero or one - or anything in between as well.

If we are to determine the spin - we need to calculate this. The state of the electron is
determined:

If both align perfectly - they will be 100% in one state. If we reduce the probability in one
state - it will shift the probability. Chances are now higher the spin position will be in the other
state - a probability of it being in that state at least.

If we want to calculate this position - we need to take the adjoint of A (remember: + sign),
and multiply it to the electron. This is called the inner product.



Bra-ket

This annotation will simplify the mathematics behind this calculation. We are going to use the
inner product a lot - Bra Ket notation simplifies this operation. The angular signs < .... >
refers to the first bracket being the Bra, the second one being the Ket. If you see either only
one of both this will represent a clear vector. Ket 0 (|1>) means 1 0, Ket 1 (|J0>) means 0 1.
We don’t perform mathematics - we just simplify the notation.



Bra Ket

Returning back to the superposition matrix - we can simplify the matrices as following:

You can clearly see the simple Ket annotation at the bottom, instead of having to annotate
the probability with matrices. It simplifies the annotation! Now we can also start looking at
multiple qubits - and determine their states in Kat notation opposed to creating matrices all
the time. We will use the tensor product here to create matrices. Remember that each Ket
state is one single matrix - with tensor product you can combine both into one matrix!




Once we take more advanced formulas - we can see how superposition and entanglement
works in practice for two qubits. In the below graph you have four results - as we have two
qubits:

e P(00)=%.
e P(01)=0.
e P(10)=0.
e P(11)=1%.

Now we truly see what this superposition and entanglement mean. As the below qubits have
a 50% probability of either being in P(00) state, or P(11) state - they both have a 50%
probability.




Qiskit

Classical gates

When writing code it will eventually be converted to 0’s and 1’s. This needs to be translated
for transistors in order to obtain X amount of voltage. Classical gates can manipulate these
0’s and 1’s. We refer back to the truth table. This is for regular computing - not quantum
computing, as this will be a lot more difficult. A is input, Q is output.

e Buffer: basic gate - it doesn’t do anything. 0 for input, 0 for output. 1 for input, 1 for
output.

e NOT: reverses the value - 1 input, 0 output!

e AND: we now have two values: A and B. In order to have a 1 as output, you will need
to have both A and B as 1 state.

[ ]
o
A
=
.
=
=y
)
=
<
QL
C
D
&
—
1
—
=y
(0]
o
[
~—
©
C
=%
g
(o
(0]
-_—
=
(o
o
—
=y
®
(]
—
1
<
o
c
g
«Q
0]
~—
—

NAND: NOT and - being the opposite of the AND gate.



e NOR: NOT OR - reverse of OR!

e XNOR: EXCLUSIVE NOT OR - same inputs will result to 1, or 0. Both inputs need to
be the same!

In quantum computing these concepts are similar - but on a whole different level. The
classical gates will be different when dealing with quantum gates.



Quantum gates

e X(NOT): reverses 1 and 0 to 1 and 0. It is now a matrix!
X | 1 >: reverses the Ket 1 state.
X | 0 >: reverses the Ket O state.

Now to go IBMs Quantum Compose to practise these gates.

e Q-Sphere: provides a sphere with the Ket state.
e Statevector: provides the matrices used.

Statevector

State 1

Amplitude: 1
Phase angle: 0

amplitude

Computational basis states

Output state

[ e+83, 1+087 ]

The idea you need to obtain is that the end result is provided in matrices.



e Pauli gates: names after the physicist who came up with these gates.
o Y (PauliY)
o Z(PauliZ)

e H (Hadamard): most important gate of all! Hadamard gates will make sure we will
enter superposition. Now both Ket 1 and Ket 0 have a 50% probability -
superposition! With multiple qubits this will get a little crazy.

When applying two qubits, both with a Hadamard gate, probabilities will be 25% for each
state! Now this is what the superposition means - it can be either any state (with probability).




e CNOT: similar to NOT gate - but it is a controlled NOT gate. In other books this can
be a different matrix. In Qiskit the below matrix will always be the same (alternative
matrix = different calculation). It applies the XOR logic.

You need to apply the CNOT gate to at least 2 qubits. Below are the maths for this gate.

This will create a superposition gain + entanglement!



Hadamard & CNOT

|[+>: Ket + means the qubit is in the superposition.

Hadamard & CNOT

Now apply the CNOT gate to the Hadamard gate - and calculate for superposition +
entanglement! Hadamard will put a qubit in a superposition - CNOT will entangle them.

Hadamard & CNOT




Qiskit
Framework for python enables us to interact with IBM quantum computers to create circuits,
program them and run code on these machines. A variety of modules are available.

GitHub: https://github.com/Qiskit/qiskit

e Qiskit Terra: open-source SDK for working with open source quantum computers.
This is the main module we’ll be working on.

Qiskit Simulator: Aer.

Qiskit Experiments: Ignis.

Qiskit Application Modules: Aqua.

Qiskit IBM Quantum: Provider.

They serve the purpose of creating quantum software, or quantum technologies. Use the
IBM Jupyer notebooks and composer to work with the exercises.

Choose the ibmq_gasm_simulator: select the amount of shots that need to be calculated.
And add measurements to your quantum composer.

qasm_simulator

Online

2

Above you see the visual representation - below you see the coded part! H will add
hadamard gates, cx will add the XNOT gate, measure will add measurements!

from giskit import *
test = QuantumCircuit(2,?)

test.draw()
#matplotlib inline
test.draw(output="mpl')

test.h{[B])
test.draw()

test.cx(B,1)
test.measure([®,1],[0,1])

test.draw(output="mpl')



https://github.com/Qiskit/qiskit

Now we can also use the IBM quantum machines to get the results - as you can see at the
bottom, the result will now return our results... but we want to make it more clear (not an
entire list).

it import *
test = QuantumCircuit(2

atplotlib inline
test.h(

test
test.measure(
test.draw(outpu

simulator = Aer _back )
result ecute (test, backend=simulator) . result(

print(result)

Result(backend_name="qg; imulator’ acks 1 e 3 -4b98-8ba7-b91992 @', job_1
Tue, results: i 1 5| L xperimentResultData(counts=§'0x3': 514, "Ox
entHeader(clbit_labels=[['c’, 8], [ creg_s [ : n_gubits=2, name=
gubit_labels=[['q", @], 1), status=DONE, seed_ 376 8, metadata={ 1 ‘1 ‘batched_shots_optimization
*parallel_shot: 3 i nput_gqubits': [@, 1], ‘num_clbits': 2, 'parallel_state_update
"num_qubits . [[1, 1], [®, ©]], 'method': 'stabilizer', 'fusion'
- OMPLETED, header=QobjHeader(bacl s gasm_simulator’, backend_versios
i 't 6, ‘num_mpi_ *max_gpu_memory_mb
periments’ : ‘omp_enabled': Truel, time

By adding the visualisation code you can obtain a very clear histogram:

from giskit.visualization import plot_histogram

plot_histogram(result.get counts(test)})




Getting real quantum computer properties

For this you will need the IBM API key.
You can create a file and put the API in there - now you need to select the proper machine.

from qiskit import #

IBMQ. coount ("ibma xt”, ") .read())
IBMQ.load_account(

Aer.backends()

provider = IBM{.get_provider(“ibm-g")

provider.backends ()}

configrc.store_credentials:WARNING 3-02-85 1 ,806: Credentials already present. Set overwrite=True to overwrite.
ibmgfactory.load_account:WARNING:2023-02-05 14:35:44,899: Credentials are already in use. The existing account in the session will be replaced.

[<IBMQSimulator(’ibmg_gasm_simulator') from IBMQ(hub='ibm-q', group=‘open', project='main')>,
<IBMQBackend _lima') from IBMQ(hub="ibm-q', group='open', pro 'mai

<IBMOBackend _| from IBMQ(hu ', group="open’', project='main

<IBM(Backend i from IBMQ( 1 ', group='open', pr i
<IBMQSimulator(’si hub="ibm-q', group

<IBMQSimulator(

<IBMQSimulator(

<IBMOSimulat:

="ibm-q', group='open', projec
<IBMOBackend('ibm_oslo') from IBMQ(hub="ibm-gq°, group='open’, project='main

We can further code everything here to include everything we can see in the visual
representation provided by IBM.

from giskit import =*
IBM().=ave_account{open(”ibmapi.txt","r").Tead())
IBM).load_account()

Aer.backends()
provider = IBM).get_providex(”ibm-g")
providers = provider.backends()

for backend in providers:
try:
qubit_count = len(backend.propertie=() .qubits)
except:

qubit_count = "sim

print(f"ibackend.mame()}} : {backend.status().pending_jobsil & jgqubit_count? gubits")

—

ibmg_gasm_simulator : 3 & simulated gubits
ibmg_lima : 4 & 5 gubits

ibmg_belem 93 & 5 gubits

ibmg_guito : 14 & 5 gubits
simulator_statevector : 3 & simulated qubits
simulator_mps : 3 & simulated qubits

3

simulator_extended _stabilizer : 3 & simulated gubits
simulator_stabilizer : 3 & simulated gubits
ibmg_manila : 28 & 5 gubits

ibm_nairobi 15 & 7 qubits

ibm_oslo : 23 & 7 gubits

Now you can see every single detail: the name, the pending jobs and the qubit count!



Running on a real quantum computer

Since we know which quantum computer we will be using - we will execute code on the
selected quantum computer! Choose one with lesser jobs.

We need to add new code in order to monitor and watch the job we are running - as we
cannot see what our position is in the queue!

import giskit.tools.jupyter
1 it_job_watcher
from giskit.tools.monitoxr import job_monitor

IBM().load_account()

provider = IBM(.get_provider(hub="1bm-g")
qcomputer = provider.get_backend( ibmg_lima')

job = execute(test, backend=gqcomputerx])

Job Status: job has successfully rum

job_monitor(job)

Now you will get a handy dynamic parameter job_monitor that will display your position in
the queue and yet you know once the result is completed.

Now we still want the end results by adding the following code:

quantum_result = job.result()
plot_histogram({quantum_result.get counts(test))

Why do they end up in 01 and 10? This is called Quantum Noise (heat, air,...) and a
quantum computer is subject to these factors. It will give back some “faulty” results, but are
not perfect. Once using real computers, these “errors” will persist (for now).



Toffoli

This is a three-qubit gate with two controls and one target. It performs an X on the target
only if both controls are in the state [1> (Ket 1).

There are two types of qubits: a control qubit, and a target qubit.
e Control: if these qubits are in a certain state, the target qubit will perform an action.
e Target: if the control qubit(s) are in a certain state, the target qubit will perform an
action. This action is the equivalent of putting the qubit in a certain state (up or
down).

This is called a controlled-controlled-not gate (or CCX gate). Now we have 2 control qubits
instead of only 1. If both qubits are in the same state, it will execute the target qubit. If not -
it will not perform a clear state in the target gate.




from giskit import *
test = QuantumCircuit(2,2)

#matplotlib inline

test.h{[8])

test.cx(0,1)
test.measuze([o,1],[0,1]1)
test.draw{output="mpl"')

simulator = Aer.get backend( gasm_

result = execute(test,backend=simulator).result()

print(result)

from giskit.visualization import plot_histogram

plot_histogram({result.get_ counts(test))

Result(backend_name='gasm_simulator', backend_version="6.11.1"
1", success=True, results=[ExperimentResult(shots=1824, succesj
perimentHeader (clbit_labels=[["c', 8], ['c’', 1]], creg_sizes=[
sizes=[['g", 2]1], gubit_labels=[['g', 8], ['g', 1]]1), status=0(
g, 'measure_sampling': True, "parallel shots': 1, 'remapped_gul
le_measure_time': 08.081982352, 'num_gqubits': 2, 'device’:
time_taken=0.0805827458)], date=2023-02-05T14:28:34.723519, sta
data={'time_taken': 0.8006438045, "time_taken_execute’': @.B885392
rallel experiments": 1, ‘time_taken_load _gobj': 0.808518182,




Teleportation (quantum)

We’'ll look into quantum algorithms and reimburse what we have learned so far.

Phase

Zgate is a new kind of gate - kind of an identity matrix with a minus. This gate is the
equivalent of a phase flip. It turns Ket 0 into Ket 0, but it turns Ket 1 into a minus Ket 1 state.

The possibilities will not change - it just turns one Ket 1 into a minus Ket 1.

The phase circle is allocated in the IBM quantum composer - which we haven’t used yet.
Once we apply the Hadamard and Z gates - we have a phase, Minus Ket 1.

It doesn’t affect the outcome - but in a complicated circuit it will affect the outcome (red Ket).
In the Bloch sphere it will rotate the Ket sphere into a different direction.



Phase and bloch sphere

The bloch sphere will return a 3-D vector, opposed to the regular sphere.

from giskit impoxrt =

from giskit.tools.visualization import plot_bloch_multivectorx
from giskit.visualization import plot_histogram

#matplotlib inline

impoxrt math

Aer.backends()

gasm_simulator = 1
statevector_simulator vector_simulator')

def run_on_simula s (circuit):
statevec_job = execute(circuit, backend=statevector_simulator)
result = statevec_job.result()
statevec = result.get_statevectoz()

num_gqubits = circuit.num_gubits
circuit.measure([i for i im range(num_gubits)], [1 for 1 im range(num_gqubits)])

gasm_Jjob = execute(circuit, backend=gasm_simulator, shots=] ) .xesult()
counts = gasm_job.get counts()

return statevec, counts

circuit = QuantumCircuit(?,?)
statevec, counts = run_on_simulators{circuit)
plot_bloch_multivector(statevec)

circuit.h({&)
statevec, counts = run_on_simulators{circuit)
plot_bloch_multivector(statewvec)

Since we added the Hadamar gate - it will be in a superposition. The qubit is either in the 0
state or in the 1 state (probability is ~50%).



Adding another CNOT / XNOT gate - we get a very “weird” result:

circulit = QuantumCircuit(2,2)
circuit.h(

statevec, counts = run_on_simulators(circuit)
plot_bloch_multivector(statevec)

circuit = QuantumCircuit

circuit.rx(math.pi/a

circuit.rx(math.pi

statevec, counts = run_on_simulators(circuit)
plot_bloch_multivector(statevec)




Now we can apply the same for the y parameter:

circult = QuantumCircuit(2,2)
circuit.ry(math.pi1/4, €

circult.xry(math.py,

statevec, counts run_on_simulators(circuit)
plot_bloch_multivector(statevec)

What does this mean: Hadamard will rotate this vector to a specific direction in a
mathematical equation. If we apply Hadamard again - we will see that the second qubit
(qubit 1 - picture on the right) is exactly the same.

Adding a ZGate to this equation would make a lot more sense - so we add a Hadamard gate
AND a ZGate to the equation. Compared to a single Hadamard gate in the previous picture -
we see the ZGate simply reversing the Hadamard gate for Qubit 0.

circuit = QuantumCircuit(2,2)

circuit.h(@)

ciTrcuit.z (@)

statevec, counts = rum_on_simulators(circuit)
plot_bloch_multivector(statevec)

By using Rx, Ry rotations, we can provide a variety of rotations to the sphere. A qubit is very
flexible in which we can provide further advanced calculations.
https://github.com/atilsamancioglu/QX03-PhaseAndBlochSphere



https://github.com/atilsamancioglu/QX03-PhaseAndBlochSphere

Superdense coding

We’'re going into quantum algorithms and see quantum teleportation. Superdense coding
means we can store two bits of numbers in one, single qubit. But this statement is not
correct... We can put a qubit in a superposition and entangle them, but it will eventually
collapse to one classical bit (0 or 1). How is it possible to use only one qubit, and return
00, 01, 10 or 11? We’'ll be using the method of entanglement. We can manipulate the
outcome by utilising only one single qubit.

EVE = an “eavesdropper” trying to listen to the messages of Alice and Bob. Alice and Bob
are simply fictional examples. One qubit is for Alice, the other one for Bob. Before Alice
gives the qubit to Bob, Alice provides a Hadamard gate and a CNOT gate. ltisin a
superposition, and both qubits are entangled. Alice will eventually take one of the qubits -
and apply a gate on this qubit. When she returns this qubit to Bob, she will manipulate the
qubit. You can now apply any kind of date (NOT gate, ZGate,...).

How does it affect the outcome? If you apply an X Gate it will apply an effect. The

eventual value will change eventually. The phase is represented by the “+” or “-*, the result
will depend on the Ket value. Both of them will change accordingly.

We can now manipulate one qubit, and change the value of the other qubit if they are
entangled (due to the CNOT gate and Hadamard superposition). We can now effectively use
different gates to affect the outcome - and use one qubit to store two bits of data if we want
to.




Quantum teleportation

We are going to transform the state of one qubit to another qubit. This is called quantum
teleportation. Why does this matter? You can clone classical bits in a simple way (since
they can only be 1 or 0) but in qubits it is not easy to do that. You cannot clone quantum
bit states and this is called no clone theorem: the no-cloning theorem states that it is
impossible to create an independent and identical copy of an arbitrary unknown quantum
state.

A greek letter is introduced to determine if we have an unknown state: |@p>=a|0>+3|1>
This is called Ket “Sy”. We will try to transform this unknown state into Bob’s qubit state.

Q2 will be a helper qubit, also called an Ancilla qubit. We now have three qubits - entangles
Q1 and Q2, and give Q2 to bob. Now we tensor product this unknown state to the known
state.

Later on Alice applies a CNOT gate to Q1 - and this will make sure the total state is
transferred. Additionally - she will apply a Hadamard gate.






In order to transform the states to obtain a final result - Bob needs to transform the states
with additional gates (I gate, X gate, Z gate, or XZ gate). This way Bob can transform the
final state by looking at the values Alice has measured.

If we try this in the Quantum Composer we get the following results:

outcome

Measurement

Frequency

We can see that the second qubit (which is always ‘1’) is successfully transferred. We'll look
into Qiskit for an even clearer view of these states.



Teleportation in Qiskit

This is a gate to go towards the quantum algorithms - it does not solve a real-life problem
(just yet). This part will have the same result as the last time - but coded into Qiskit.

https://github.com/atilsamancioglu/QX04-QuantumTeleportation

from giskit import *
from giskit.visualization import plot_histogram
#matplotlib imline

circult = QuantumCircuit (3

circuit.x(8)

circuit.barrier()

circuit.cx(@,:
circuit.h(1) circuit.h(®)
circuit.cx(1,2

circuit.barrier()

BB isasize ) circult.draw(output="mpl’')

circuit.draw({output="mpl"')

circult.measure([8,1],[8,1]1)
circult.barrier()

circult.draw(output="mpl"')



https://github.com/atilsamancioglu/QX04-QuantumTeleportation

circuit.cx(1,2
circult.cz(E

circult.measure([2]
circuit.draw(output="mp

simulator = Aer.get_backend( gasm_simulator’]

result = execute(circuit, backend=simulator, shots

plot_histogram({result.get_counts(circuit))

<frozen importlib._bootstrap>:219: RuntimeWarning: scipy._lib.
C header, got 64 from PyObject

273

As you can see by the end result - it is in fact very similar. Since we are looking into
transportation - we are mostly (only) interested in the state of Q2: which is always 1.



Bernstein vazirani

This is our first quantum algorithm! Once quantum computers get better (close to “perfect”,
error free quantum qubits) we can see those improvements in our daily lives as well. From
that point on these algorithms can be effectively used to solve real-life problems.

Quantum computers do not always solve everything faster than regular computers. If
a “problem” can be solved by applying superposition and entanglement effectively - it can be
calculated faster. Certain algorithms can outperform classical computers in some way. But
sometimes classical computers still perform better - such as Brute Forcing.

Every algorithm is named after their founder.

We pick a number - and we try to guess it. In a string format (it doesn’t
really matter - binary format) we can guess this number. A human will
try any other combination to try and guess this number. We have A
LOT of numbers - and with luck - someone can find this number
instantaneously. Classical computers can do it more efficiently - and
can take a certain bit - and use an AND operation. If it sees ‘1’ - ‘1’ it
knows the binary number is a 1. For each combination it will do this -
and it only needs 7 tries to guess this number. Is it 1 - then we know it
is correct, is the result 0, then we know this is incorrect (and ignore the
1, put a 0).

Quantum computers can do this calculation in one single try.

Qiskit
We will build the bernstein algorithm in a hard-coded fashion in the first example - and
improve the code afterwards to automate this further.

from giskit import =
from giskit.tools.visualization import plot_histogram
%matplotlib imlime

~

secretNumber = '188

circult = QuantumCircuit(s,7)

Here we simply define our imports, our “secretNumber” to guess, and our circuit.



circuit.h([®,1,2,3,4,5,6]) FLTEEIE 5T
circuit. )
circult.h{7)

circult.
circuit.cx(6,7

B . - circult.barriex()
circuit.barrier()

circult.draw(output="mpl’

Next up is applying Hadamard gates in order to shift every single qubit to a superposition. A
X Gate is applied to our latest qubit (8th qubit) and a Hadamard gate. This qubit will obtain
the eventual result. As we are hardcoding this - we put a CNOT Gate at every ‘1’ position.
This is to simply understand the role of these gates - and transform their state to our last
qubit. In the end we simply measure every qubit’s state and print the result.

circuit.h([®,1
circuit.measu.




simulator = Aer.get_backend( gas
result = execute(circuit, backend=simulator, shots=1).result()
counts = result.get_counts()

print (counts)

<frozen importlib._bootstrap>:219: RuntimeWarning: scip
C header, got 64 from PyObject

1680181 : 1%

As you can clearly see - by applying this algorithm and method - the quantum computer is
effectively able to guess our secretNumber in one, single go. This is currently hard coded.

Automation

To automate this entire flow - you simply use a lot of len() and range() formulas to obtain the
initial value from the length of the secretNumber. The end result will be exactly the same -
but the code is much more condensed - and fully automated. Additional Hadamard gates are
being added according to the for loop - which automatically detects wether or not a “1” or
‘one” is detected.

= QuantumCircuit(len(zecretNumber) + 1,len(secretNumber))

circuit.h(zr (len(secretNumber)))
(secretNumber))
circult.h({len(secretNumbex))

circult.barrier()

<giskit.circuit.instructionset. InstructionSet at Bx7f0e8ch253daE=

index, one in enumera
Crint(E )
rint{f"in findext
if onge == "1":
circult.cx{index, 1

circult.barrier ()
circuit.h(z (len(secretNumber)))

circuit.barrier()

circuit.measure({range(len(secretNumber)),range (len(secretNumber)))

circult.draw(output="mpl")

This way - our quantum computer can now guess any binary number in one single try.
https: //qﬂhub com/at|lsamanC|oun/QX06 BernstemVazwan|Alqor|tthompIete



https://github.com/atilsamancioglu/QX06-BernsteinVaziraniAlgorithmComplete
https://github.com/atilsamancioglu/QX05-BernsteinVaziraniAlgorithmSimple

Deutsch

The problem we want to solve with this algorithm is - we have a specific function. It takes O
or 1 as an input. As output we have 4 possibilities - 00, 01, 10 or 11. If the result is 11 or 00 -
we can call this function a constant function; If the input is 00 or 10 we call this a balanced
function.

If output does not depend on the input - this is a constant function. Same input = same
output.

If output depends on the input - this is a balanced function. Same input = different output.

The solution is either: is this a constant function, or a balanced function? This algorithm
requires at least two shots - but a quantum computer can do this in one single go. This will
not solve real-life problems, but will conclude quantum computers are better in some area’s
compared to classical computers.




There are correct and wrong ways of utilising this algorithm. Only using one Hadamard gate
for our first Qubit isn’t going to work correctly - hence why we need multiple superpositions,
and an X Gate.

We can further simplify “Sy” 2 to the below formula - and now we still need our final result
“Sy” 3.

Qiskit & Composer

To visualise this better - we can create this algorithm in the composer and code it in Qiskit.




If we run the following composer - we will end up with one single result - which is what the
Deutsch algorithm does:

Measurement outcome

Frequency

circuit.h({&)
circuit.x(1)
circuit.h(l)

circuit.barrier()

circult.draw{output=

circuit.cx(8,1)
circuit.barrier()
circuit.h{@)
circuit.draw(output="mpl ')

circuit.measure(
circuit.draw{owtp




Now you can see that we only get one result for every shot we took. This is a balanced
function and requires only one single shot:

backend 1 ]
result = exec (circui 1 5 1) .result()
counts =

plot_histogram([counts])

<frozen importlib. bootstrap>:219: RuntimeWarning: scipy._lib.me
C header, got 64 from PyObjec

Now the real issue is the fact we still have quantum noise. We now can effectively see that
the quantum computers from today still aren’t perfect yet (his is the same code as used in a
previous exercise - HeloQuantum).

Once this calculation is more accurate - we know the quantum computer is effectively being
a lot more accurate.
https://github.com/atilsamancioglu/QX07-DeutschAlgorithm


https://github.com/atilsamancioglu/QX07-DeutschAlgorithm

Grover’s

This algorithm can be used in real-life situations (unlike the previous algorithms). This is a
search algorithm that can be used to search something. You have a series of numbers -
you need to find a number - but the list is mixed. In order to find the number - you can guess
it one by one... but this algorithm can effectively search the list and give you the number.

Classic search algorithm

In this example we will look at how a classic approach is handled nowadays in Python. This
is a very simple example - but the list could have been a thousand numbers. Since a classic
solution will have to iterate over each single number to look for our winningNumber - it will
take time until you have found the solution. Grover’s algorithm can do this much faster (in
one, single shot) - which may not succeed every single time at doing this. It just increases
the possibility / probability of finding the number significantly faster.

from giskit import +*
from giskit.tools.visualization import plot_histogram
¥matplotlib inline

MyList = [5,4,6,9,1,2,3,7,8,0]

def oracle(number) :
winningMumber = B8
if number == winningNumber:
response = True
else:
response = False
return response

index, number im enumerate({MylList):

if oracle(number) is True:
print (£"Winning number index: findex}")
print(f“e Fion count: findex + 1%")
break

Winning number index: B
execution count: 9




Applying Grover’s

We’'re going to flip the phase of the winning state - instead of “11” we will succeed by
applying “-11”. This is a reflection circuit - which will increase the possibility of finding this
winning state. We will not entangle - we are just dealing with a superposition and taking a
tensor product of these possibilities. We will be looking into creating our own gate to be
utilised with this algorithm.

Reflection makes sure that we can look for the winning state (Jw>). Every single time we do
this reflection we get one step closer to the winning state. Perhaps not with 100% probability
- but it tries to maximise the possibility of obtaining this Kat w state.

reflectionCircuit = QuantumCircuit(?, name="ref]
reflectionCircuit.h{[&,1])

reflectionCircuit.z( )

reflectionCircuit.cz( )
reflectionCircust.h{[8,1])
reflectionCircuit.to_gate()
reflectionCircuit.draw(output="mpl")

mainCircuit = QuantumCircuit(2
mainCircuit.h([6,1])
mainCircuit.append{oracleCircuit, [8,1])

mainCircuit.draw(output="mpl"})

Qo — H —0 —
oracleCircuit

dh— H —1 —

2

C




mainCircuit.append({reflectionCircuwat, [6,1])
mainCircuit.measure([8,1],[®,1]1)
mainCircuit.draw(output="mpl ")

4] —_0
oracleCircuit reflectionCircuit
1 _1

backend )
result X (mainCi ac cend , shots=1) . result ()
counts = _counts(mainCircuit)

plot_histogram([counts])

In the above coding example you can see that Grover’s can get the winning state in one,
single go. https://github.com/atilsamancioglu/QX08-GroversAlgorithm



https://github.com/atilsamancioglu/QX08-GroversAlgorithm

Shor’s

One of the most important - but one of the hardest to understand. It will clearly determine
how our lives will change - we will be able to find prime factors of large numbers. This can
effectively make or break encryption we understand nowadays.

Finding a prime factor is easily done with a small number. But finding prime factors of large
numbers is a lot harder for classical computers. Quantum computers will be able to do this a
lot faster. In order to break an algorithm such as RSA - you need to spend a “thousand
years” in order to calculate this prime factor. A Quantum computer with X qubits will be able
to do this in just a matter of time (possibly less than a minute) in the near future once qubits
are more accurate. It is concerning - but this is a real probability now quantum
computing is effectively being created and progressing.

PRIME FACTORS

MODULAR ARITHMETIC

Modular arithmetic is ‘simple’: 3 is the rest number, and then we divide 26 to the mod of 23.
Thanks to a GCD - we will be able to find a prime factor of, for example, 21. In the below
example we want to find X.

FIND PRIME FACTORS OF 21




The prime factors of 21 are effectively 3 and 7 - this is a classical computation. General

rule: it shouldn’t be -1 or +1 - this will just make it easier. But we might consider a more
real-life calculation.

To find these prime numbers - we simply go into a (big) loop to find the end result. This is a
periodic function - we take a random number - and we have a 50% probability of finding the

solution (luck). The period number should be an even number. Effectively we want to find the
periodic number.

90% PROBABILITY

Above is mainly the way we calculate these prime factors from a classical computer
standpoint - or basic mathematics. The quantum way does this in a completely different way.
https://github.com/atilsamancioglu/QX11-ShorsClassical


https://github.com/atilsamancioglu/QX11-ShorsClassical

Shor’s easy way

We will be using layers of abstraction in order to make things easier for us. One algorithm is

QUANTUM FOURIER TRANSFORM:

1 QUBIT

As we write out simple program - Shor’s can calculate the prime numbers in a matter of time
(and probably a matter of minutes as well). The calculation still takes a bit of time - but is
going to be scaled up in the future. The below code can hereby calculate the prime numbers
for 15. When we increase this prime number - it will take more time and effort already.

import math

import numpy as np

from giskit import Aer

from giskit.utils import QuantumInstance
from giskit.algorithms import Shorc

<frozen importlib._bootstrap>:219: RuntimeWarning: scipy._lib.messagestream.MessageStream
C header, got 64 from PyObject

N = 15

backend = Aer.get_backend( 'z

guantum_instance = QuantumInstance(backend, shots
shor = Shor{gquantum_instance=guantum_instance)

ithm i= fresult.factors[@8]}.")

/tmp/ipykernel_691/2546798916.py:4: DeprecationWarning: The Shor class is deprecated as of Qiskit

no sooner than 3 months after the release date.

It is replaced by the tutorial at https://giskit.org/textbook/ch-algorithms/shozr.html
shor = Shor(guantum_instance=quantum_instance)

The list of factors of 15 as computed by the Shor's algorithm is [3, 5].

After about a minute or 2 - the algorithm was able to calculate the prime numbers 3 and 7 for
12. This still requires quite some time - even for a simulation!

The list of factors of 21 as computed by the Shor's algorithm is [3, 7].




Quantum Fourier Transform (QFT)

In order to understand the algorithm better - we need to understand QFT. We will be going to
transform the basis. The computational basis is either in 0 state or 1 state.

QUANTUM FOURIER TRANSFORM:

2QuBIT

We effectively sum up the formula and specifically look at e to the pi*i = -1.

https://www.youtube.com/watch?v=vOYEaelCIKY going more in depth about the
mathematical explanation.

QUANTUM FOURIER TRANSFORM:

1 QUBIT

The QFT formula is essentially the basic formula used. Essentially we end up with a matrix
(or a U gate) - we know how to build our circuit (and the matrix / formula).


https://www.youtube.com/watch?v=v0YEaeIClKY

.;m«r  UROT § UROT  UROT

@) wor— wRar —uRor

Mathematically it is essentially the reverse order. If you find a QFT circuit you can see swap
gates. Now we want to use this in a Quantum Phase Estimation.



Quantum Phase Estimation (QPE)
Essentially we want to find a phase - an angle. QPE will help us find the Theta (i©).

QUANTUM PHASE ESTIMATION:

With one qubit (represented by the |0> Ket) - we can calculate further formula.

QUANTUM PHASE ESTIMATION:

If we want to calculate the probability of one - we need to decrease the theta / phase. Once
we find this theta, we can effectively increase the probability. It may take a very long time.
Theta could be 1, 10 or even 99.




The above example is provided with one qubit - we obviously want to do this with more
qubits.

QUANTUM PHASE ESTIMATION:

!
g
|
l UMy

The major difference between both: the angle is different. If we provide the adjoint of the
QFT - we end up with the theta: |2n©>.

: qubits!

: apply Hadamard gates for superpositions.

. apply for the QPE.

: measure the results to find the P and Q. (N = pq).
: apply the adjoint of QFT(+).

: measuring the final results.

a b, WON -0



We are trying to write Ket X and Ket W in one go. Calculating these values will result in a
“final” matrix. Ket W is either 1, 13, 4 or 7, for example. Now we take one measurement
(assumption) - for example 7. It would change the X values in the end.

In step 4 we implement the QFT - take the adjoint and transpose the imaginary parts. (2 ->
-2). Number 4 is only one single example - we should do this for every number.




If we calculate all 16 values - we eventually end up with 4 values (0, 4, 8 and 12 - binary or
decimal). Now we can calculate the X and effectively get the prime numbers.

The function we eventually have defined is the following in order to find the modular powers:

Exponential calculator: https://github.com/atilsamancioglu/QX10-ExpCalculator
Shor’s quantum circuit manual:
https://github.com/atilsamancioglu/QX12-Shor ntumManual


https://github.com/atilsamancioglu/QX10-ExpCalculator
https://github.com/atilsamancioglu/QX12-ShorsQuantumManual

